首頁>> 中文>> 專家人才

專家人才

  • 姓名:康樂
  • 性別:
  • 職稱:研究員
  • 學曆:博士
  • 電話:
  • 傳真:
  • 電子郵件:lkang@ioz.ac.cn
  • 通訊地址廣州市黃埔區開源大道190號

    簡曆:

  • 樂,中國科學院特聘研究員,中國科學院院士、發展中國家科學院院士,美國國家科學院等7個國家和國際組織的外籍院士,是國內外著名生態基因組學專家。現任中科院北京生命科學院院長、河北大學校長。長期從事生態基因組學研究,國家“973”項目首席科學家和基金委創新團隊學術帶頭人,也是國際上幾個重要學術期刊的主編和編委。他將基因組學與生態學結合,係統研究動物的適應性和表觀可塑性。在相關領域發表SCI論文200餘篇,重要論文發表在Nature, Science, Science Advances, Nature Communication, PNASGenome Biology等重要刊物上,總引用萬餘次,是Elsevier選出的農業和生物學高被引科學家(Scopus 2014-2021)。是F1000Faculty memberAdvisory board member。從1995年起,他已經培養了90多名博士和碩士研究生,10多名博士後,許多人已經成為國家重要的學術帶頭人,如特殊人才計劃入選者、研究員、教授、國家青年科技獎和國家優秀青年基金項目獲得者等。

    研究領域:

  • 主要開展生物過敏原引起的呼吸道過敏性疾病以及相關的免疫學機理研究。圍繞塵蟎、蟑螂、花粉等過敏原造成的過敏性疾病發病機製的基礎研究,通過建立相關動物模型及利用臨床樣本,在分子、細胞、基因組學水平上探索呼吸道過敏性疾病發生和發展的機製。開展綜合性和交叉型前沿研究,利用綜合性的平台和多種技術手段,闡明其誘發的過敏疾病的發病機理,為過敏性疾病預防、診斷和治療性疫苗的研究奠定理論基礎。

    承擔科研項目情況:

  • 1.國家自然科學基金委項目“作為昆蟲嗅覺進化重要節點的飛蝗嗅覺編碼與處理機理研究”項目負責人;

    2.國家自然科學基金委基礎科學中心項目“生物信息流的解碼與操控”項目骨幹;

    3.國家自然科學基金委麵上項目“飛蝗嗅覺吸引行為的神經分子機製”項目負責人;

    4.中國科學院戰略性先導科技專項項目“生物互作機製的解構與設計——農業有害生物的智慧型防控”負責人。

    社會任職:

  • 2008年 國際昆蟲學會 執行理事。

    2019年 國際生物科學聯合會(IUBS)副主席。

    2019年 國際生物科學聯合會中國委員會(CCIUBS)主席

    2022年 國際科學理事會中國委員會(ISC-China)副主席

    獲獎及榮譽:

  • 2011年 何梁何利生命科學與技術進步獎

    2013年 美國昆蟲學會頒發的傑出科學家獎

    2015年 第八屆談家楨生命科學獎成就獎

    2017年 國家自然科學二等獎

    2017年 中國科學院傑出成就獎

    2019年 馬世駿生態科學成就獎

    2021年 國際化學生態學會西弗斯坦-西蒙尼獎

    代表論著:

  • 1.Wang, Y., Zhang, Y., Lou, H., Wang, C., Ni, M., Yu, D., Zhang, L., &Kang, L. (2022). Hexamerin-2 Protein of Locust as a Novel Allergen in Occupational Allergy.Journal of Asthma and Allergy, 15, 145–155. doi.org/10.2147/JAA.S348825

    2.Guo, X., Yu, Q., Chen, D., Wei, J., Yang, P., Yu, J., Wang, X., &Kang, L.(2020). 4-Vinylanisole is an aggregation pheromone in locusts.Nature,584(7822), 584–588. doi.org/10.1038/s41586-020-2610-4

    3.Wang, Y., Tong, X., Yuan, S., Yang, P., Li, L., Zhao, Y., &Kang, L. (2022). Variation of TNF modulates cellular immunity of gregarious and solitary locusts against fungal pathogenMetarhizium anisopliae.Proc. Nat. Acad. Sci. (USA),119(6), e2120835119.doi.org/10.1073/pnas.2120835119

    4.Wang, H., Jiang, F., Liu, X., Liu, Q., Fu, Y., Li, R., Hou, L., Zhang, J., He, J., &Kang, L. (2022). Piwi/piRNAs control food intake by promoting neuropeptide F expression in locusts.EMBO Reports,23(3), e50851. doi.org/10.15252/embr.202050851

    5.He, J., Zhu, Y.N., Wang, B., Yang, P., Guo, W., Liang, B., Jiang, F., Wang, H., Wei, Y., andKang, L. (2022). piRNA-guided intron removal from pre-mRNAs regulates density-dependent reproductive strategy.Cell Report,39, 110593.

    6.Du, B., Ding, D., Ma, C., Guo, W., &Kang, L. (2022). Locust density shapes energy metabolism and oxidative stress resulting in divergence of flight traits.Proc. Nat. Acad. Sci. (USA),119(1), e2115753118. doi.org/10.1073/pnas.2115753118

    7.Wei, J., Shao, W., Cao, M., Ge, J., Yang, P., Chen, L., Wang, X., &Kang, L.(2019). Phenylacetonitrile in locusts facilitates an antipredator defense by acting as an olfactory aposematic signal and cyanide precursor.Science Advances, 5(1), eaav5495. doi.org/10.1126/sciadv.aav5495

    8.Yang, M., Wang, Y., Liu, Q., Liu, Z., Jiang, F., Wang, H., Guo, X., Zhang, J., &Kang, L. (2019). A β-carotene-binding protein carrying a red pigment regulates body-color transition between green and black in locusts.eLife,8, e41362. doi.org/10.7554/eLife.41362

    9.Guo, X., Ma, Z., Du, B., Li, T., Li, W., Xu, L., He, J., &Kang, L. (2018). Dop1 enhances conspecific olfactory attraction by inhibiting miR-9a maturation in locusts.Nature Comm.,9(1), 1193. doi.org/10.1038/s41467-018-03437-z.

    10.Ding, D., Liu, G., Hou, L., Gui, W., Chen, B., &Kang, L. (2018). Genetic variation in PTPN1 contributes to metabolic adaptation to high-altitude hypoxia in Tibetan migratory locusts.Nature Comm.,9(1), 4991. doi.org/10.1038/s41467-018-07529-8

    11.Chen, B., Zhang, B., Xu, L., Li, Q., Jiang, F., Yang, P., Xu, Y., &Kang, L. (2017). Transposable Element-Mediated Balancing Selection at Hsp90 Underlies Embryo Developmental Variation.Molecular Biology and Evolution,34(5), 1127–1139. doi.org/10.1093/molbev/msx062

    12.He, J., Chen, Q., Wei, Y., Jiang, F., Yang, M., Hao, S., Guo, X., Chen, D., &Kang, L. (2016). MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts.Proc. Nat. Acad. Sci. (USA),113(3), 584–589. doi.org/10.1073/pnas.1521098113

    13.Yang, M., Wang, Y., Jiang, F., Song, T., Wang, H., Liu, Q., Zhang, J., Zhang, J., &Kang, L. (2016). miR-71 and miR-263 Jointly Regulate Target Genes Chitin synthase and Chitinase to Control Locust Molting.PLoS Genetics,12(8), e1006257. doi.org/10.1371/journal.pgen.1006257

    14.Wang, X., &Kang, L. (2014). Molecular mechanisms of phase change in locusts.Annual Review of Entomology,59, 225–244. doi.org/10.1146/annurev-ento-011613-162019

    15.Wang, X., Fang, X., Yang, P., Jiang, X., Jiang, F., Zhao, D., Li, B., Cui, F., Wei, J., Ma, C., Wang, Y., He, J., Luo, Y., Wang, Z., Guo, X., Guo, W., Wang, X., Zhang, Y., Yang, M., Hao, S., …Kang, L. (2014). The locust genome provides insight into swarm formation and long-distance flight.Nature Comm.,5, 2957. doi.org/10.1038/ncomms3957

    16.Yang, M., Wei, Y., Jiang, F., Wang, Y., Guo, X., He, J., &Kang, L. (2014). MicroRNA-133 inhibits behavioral aggregation by controlling dopamine synthesis in locusts.PLoS Genetics,10(2), e1004206. doi.org/10.1371/journal.pgen.1004206

    17.Wang, Y., Yang, P., Cui, F., &Kang, L. (2013). Altered immunity in crowded locust reduced fungal (Metarhizium anisopliae) pathogenesis.PLoS Pathogens,9(1), e1003102. https://doi.org/10.1371/journal.ppat.1003102

    18.Cease, A. J., Elser, J. J., Ford, C. F., Hao, S.,Kang, L., & Harrison, J. F. (2012). Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content.Science,335(6067), 467–469. doi.org/10.1126/science.1214433

    19.Wu, R., Wu, Z., Wang, X., Yang, P., Yu, D., Zhao, C., Xu, G., &Kang, L. (2012). Metabolomic analysis reveals that carnitines are key regulatory metabolites in phase transition of the locusts.Proc. Nat. Acad. Sci. (USA),109(9), 3259–3263. doi.org/10.1073/pnas.1119155109

    20.Ma, Z., Guo, W., Guo, X., Wang, X., &Kang, L. (2011). Modulation of behavioral phase changes of the migratory locust by the catecholamine metabolic pathway.Proc. Nat. Acad. Sci. (USA),108(10), 3882–3887. doi.org/10.1073/pnas.1015098108

    21.Guo, W., Wang, X., Ma, Z., Xue, L., Han, J., Yu, D., &Kang, L. (2011). CSP and takeout genes modulate the switch between attraction and repulsion during behavioral phase change in the migratory locust.PLoS Genetics,7(2), e1001291. doi.org/10.1371/journal.pgen.1001291

    22.Wei, J., Wang, L., Zhao, J., Li, C., Ge, F., &Kang, L. (2011). Ecological trade-offs between jasmonic acid-dependent direct and indirect plant defences in tritrophic interactions.New Phytologist,189(2), 557–567. doi.org/10.1111/j.1469-8137.2010.03491.x

    23.Zhang, Y., Wang, X., &Kang, L. (2011). A k-mer scheme to predict piRNAs and characterize locust piRNAs.Bioinformatics,27(6), 771–776. doi.org/10.1093/bioinformatics/btr016

    24.Wei, Y., Chen, S., Yang, P., Ma, Z., &Kang, L. (2009). Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust.Genome Biology,10(1), R6. doi.org/10.1186/gb-2009-10-1-r6

    25.Kang, L., Chen, X., Zhou, Y., Liu, B., Zheng, W., Li, R., Wang, J., & Yu, J. (2004). The analysis of large-scale gene expression correlated to the phase changes of the migratory locust.Proc. Nat. Acad. Sci. (USA),101(51), 17611–17615. doi.org/10.1073/pnas.0407753101

Baidu
map